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Abstract. This paper presents an investigation of the structural properties of oriented A@SWNT peapods,
where A represents any molecular species organized on a 1D cristalline chain inside the single wall nanotubes
(SWNT). This study is based on the use of diffraction methods applied to the case of oriented A@SWNT
samples. Two preferential orientations of tubes are considered, 1D (fiber) and 2D (pellet) both having an
axial symmetry. We show that even in the case of samples presenting a very large mosaic, information about
the correlation state between C60 chains and about the C60 polymerization, can be obtained provided that
pertinent scans are performed. These are longitudinal scans along and perpendicularly to the symmetry
axis accompanied by convenient constant Q scans. Detailed diffraction patterns are simulated in the case
of a 2D oriented sample of C60@SWNT peapods (‘bucky paper’).

PACS. 61.46.+w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals – 61.48.+c
Fullerenes and fullerene-related materials – 61.10.Nz X-ray diffraction

1 Introduction

A large variety of insertion compounds have been made
with single-walled carbon nanotubes (SWNTs) since their
discovery in 1991 [1]. Insertion of ions or molecules in
SWNTs or in bundles of SWNTs generally results in a
modification of their electronic properties [2], opening the
way to interesting potential applications. Very different
molecules have been successfully inserted, generally by
filling the hollow cavity of the tubes [3]. Once synthe-
sized, the characterization of the new compound is very
often made by high resolution transmission electron mi-
croscopy (HRTEM). It provides a ‘direct’ imaging of the
local structure of filled SWNTs and it very often shows
the way the molecules do order inside the tubes. Numer-
ous examples of insertion compounds are given by the
so-called ‘peapods’ of SWNT. The terminology used to
describe these structure is A@SWNT where A stands for
a molecule, an ion or an atom inserted inside the hollow
cavity [3] of the tube. A remarkable representative mem-
ber of these complex molecular species is the C60@SWNT
peapod. In this compound, the fullerene molecules are reg-
ularly spaced along the nanotube axis so as to form a con-
fined 1D crystal.

Direct imaging by HRTEM is essential to the knowl-
edge of the structural organization of these compounds.
However, in the case of fullerene based SWNT peapods, it
has been shown that electronic beam irradiation results
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in small damages or perturbations of the local molec-
ular and atomic order as it can produce displacement
of C60 molecules, dimerization or cluster formation of
(C60)n inside the tubes [3–5]. Other techniques allowing
the A@SWNT samples to be characterized at a macro-
scopic level exist. X-ray and neutron diffraction probe
from µm3 to mm3 sample size without inducing any dam-
age to the molecular structure of the peapods. These
methods give complementary information to those derived
from HRTEM. In particular, statistical information (dis-
tribution of tube diameter, lattice parameter etc.) and
global orientation of the tubes (mosaic angle etc.) are eas-
ily achieved using diffraction while unreachable using di-
rect local methods.
This paper deals with the application of diffraction
methods to the study of the structural organization of
C60@SWNT peapods. Two questions are still open for
which HRTEM could not give definitive answers.

The first question concerns the ordering of C60

molecules along the tubule. Results from diffraction exper-
iments provide a C60–C60 statistical distance of ∼0.97 nm
[6–9] which is lower than the distance in C60 fcc crystals —
of 1.00 nm — and significantly higher than the polymer-
ized C60–C60 distance given in the literature (0.92 nm).
This suggests that the C60 molecules inside a tubule could
be partly dimerized or polymerized. However long chains
of regularly spaced molecules with a coherence length of
∼40 peas have been deduced from a diffraction data anal-
ysis [6]. More recently a Tight Binding Molecular Dynam-
ics simulation of the most stable structure of C60@SWNT
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Fig. 1. Diffraction pattern of a powder of C60@SWNT
peapods. The (10) peak is due to the array of tubes and the ar-
rows indicate the signal of C60 1D crystals at 0.65 and 1.3 Å−1.
The peak at 1.87 Å−1 is due to graphite impurities.

peapods support a dimerized structure which is calculated
to be energetically very favorable [10]. These different re-
sults demonstrate that the ordering of C60 inside SWNTs
is not yet completely understood.

The second question concerns the correlation between
C60 molecules belonging to different tubes inside the same
bundle. As we shall detail further in this paper, in the
absence of correlation, the C60 crystals are perfectly 1D.
However, if some structural correlation exists as suggested
by recent HRTEM studies in (Ca@C82)@SWNT peapods
[5], 3D nano-crystals of C60@SWNT are formed. The
physical properties of these two types of peapods are sup-
posed to be different. Therefore, the coherence length of
these crystals inside a bundle, i.e. the number of nan-
otubes concerned, plays an important role in the physics
involved in this molecular system.

In this work we present calculations of the diffraction
pattern of C60@SWNT peapods in the case of oriented
samples. The calculation method of the diffraction pat-
tern for a powdered, i.e. isotropic sample, has been re-
ported previously [6,11]. In that case, experimental data
and calculated patterns both display C60 characteristic
peaks, demonstrating fullerene ordering inside the tubules,
but these peaks are embedded into the SWNT bundle
signal (see Fig. 1). In a recent paper, Zhou et al. [12]
have presented diffraction results obtained on a ‘paper’ of
C60@SWNT peapods. They have shown that the partial
2D orientation of the SWNT strongly modify the diffrac-
tion diagram. The aim of the present paper is to define
a method of structural analysis based on the calculation
of the diffraction diagram of oriented peapods samples.
In such a case we will show that the C60 signal is sepa-
rated — or easy to separate — from that of the SWNTs
bundles.

Our paper is organized as follows: in Section 2 we
present an intuitive description of the diffraction patterns
in the case of oriented SWNT peapods so as to introduce

Fig. 2. 1D oriented C60@SWNT sample. Left part of (a) bun-
dle in direct space, right part: corresponding reciprocal space.
(b), (c) and (d) are schematic representations of scans along
lines passing through the origin. Scan in (XOY) plane: (b),
along OZ: (c) and along Ot: (d).

the method used for the simulations. We begin with a
1D perfectly oriented sample followed by the 2D oriented
sample case. Section 3 gives a detailed description of the
numerical model used for the simulations of the diffraction
patterns. Different experimental settings for the diffrac-
tometer are considered. In the discussion (Sect. 4) we ap-
ply the simulations to a 2D mosaic sample — a ‘paper’ of
C60@SWNT peapods — with various mosaic angles. We
also consider the use of an image plate detector with an
oriented peapods sample.

2 The diffraction patterns of oriented samples

This first part stands as a comprehensive introduction to
the numerical simulations that will be presented in Sec-
tion 3. Therefore, only schematic diffraction patterns are
presented in this section.

2.1 1D oriented C60@SWNT samples

Let consider a sample consisting of a large number of bun-
dles of C60@SWNT peapods, all having their long axis
oriented vertically. The 2D triangular lattice formed by
the tubes is chosen to have a random orientation around
the vertical axis. In Figure 2a the left part represents a
bundle in direct space and the right part represents the
corresponding reciprocal space. In the following we con-
sider only small Q signal, i.e. Q values lower than 2 Å−1,
so that the discrete carbon atoms of tubes and C60 can be
replaced by a uniform scatterer density. In the reciprocal
space the response of the 2D lattice of infinitely long bun-
dles is strictly restricted to the horizontal (XOY) plane.
This is illustrated by the (10) reflections that give 6 dots
per bundle. These dots are replaced by a circle when ac-
counting for all possible orientations of the bundles around
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Fig. 3. Imperfect 1D C60@SWNT sample: reciprocal space. i) Mosaic effect and definition of the angle φ; ii) short chain effect;
iii) dispersion of the parameter; iv) correlation between C60 chains.

the vertical axis. The other (hk) reflections of the 2D lat-
tice give also circles lying in the (XOY) horizontal plane
(not represented). In the case where there is no correlation
between the C60 chains of different tubes (this assumption
may be justified by the different chiralities of the tubes
forming the bundles), each 1D crystal is perfect and the
corresponding reciprocal space is made of successive par-
allel planes at Z = 0, Z = 2π/d, ..., Z = 2πl/d where l
is an integer and d = 0.97 nm is the C60–C60 distance in
the C60 1D crystal. These planes will be noted (00l) and
called (M) planes. Within each plane the response is con-
tinuous, modulated by some form factor. We can observe
that the sample itself and its reciprocal space present an
axial symmetry around Oz.

Three circles or four circles diffractometer can follow
any path in the reciprocal space, the scattering vector of
which is called Q. As usual one has Q = 4π sin θ/λ, where
λ is the wavelength of the incident beam. Figure 2b illus-
trates a scan along any direction along the (XOY) plane.
Only the 2D lattice of the tubes gives a response when
scanning this plane. In Figures 2c and 2d we give an illus-
tration of the diffraction for scans along the OZ direction
and along an oblique direction starting from the origin.
The two patterns look similar but are not identical: they
contain the same (00l) peaks but at different values of Q.
This example illustrates the unusual behavior expected
for a 1D perfect crystal, i.e. the peak position depends
on the orientation of Q. Therefore, for such 1D oriented
samples, the C60 response can be observed separately from
that of the bundles. One has to account for these peculiar
1D effect when interpreting the diffraction diagram of —
at least partly — 1D ordered samples. This could be of
major importance for peapods fibers for example. How-
ever, these 1D fiber-like systems are likely to be far from
this perfect model. Therefore imperfections have to be in-
troduced in the model. Four effects will be considered: i)
mosaic; ii) finite length of the C60 chains; iii) distribution
of the chain parameter d; and iv) correlation of C60 chains
between adjacent tubes. We assume that the radial sym-
metry is preserved so that all figures can be made in the
(YOZ) plane. Appropriate scans can estimate each effect
assuming that the intensity follows some distribution law
for which we take Gaussian functions for simplicity.

i) In a mosaic sample the bundle axis direction follows
such an angular distribution law. The mosaic angle
— the full width at half maximum (FWHM) of the
distribution- can be determined by measuring the bun-
dle signal along the C line (constant Q scan along a
circle as shown in Fig. 3i). The diffracted intensity is
then plotted as function of the angle φ. If the mosaic
angle Γ is not too large the intensity can be written
I(φ) = I0e

−αφ2
with Γ = 2

√
ln 2/α. In the case of a

large mosaic angle (Γ > ∼70◦), one has to take ac-
count of the periodicity of I(φ). In such a case, as
the periodicity is 180◦, the correct expression becomes
I(φ) = I0

∑
i e−α(φ−180 i)2) where i is an integer.

ii) If the C60 chains are short (made of few molecules),
the finite size effect has the consequence to replace
the infinitely thin (M) planes by planes with a non-
zero thickness. In the diffraction diagram, these planes
give broad responses, the half width of which δQz is
related to the coherence length along the chain by L ∼
2π/δQz. In this case all (00l) planes present the same
width which can be estimated by doing Q scan along
the Oz direction in the reciprocal space (Fig. 3ii).

iii) A disordered chain will present a dispersion of the pa-
rameter of the chain d. As an example, let consider
an inhomogeneous chain of C60 made of two parts,
the first being equally spaced fullerenes (d ∼ 10 Å)
and the second being polymerized C60 (d ∼ 9.2 Å).
The total signal is the sum of two signals of the 1D
crystals with two different parameters d. The distance
between the two corresponding (M) planes (00l) in-
creases like l. The case of continuous dispersion of the
parameter is schematically shown in Figure 3iii. For
this case, the half width δQz of the (M) (00l) planes
depends on the l index. The dispersion of the param-
eter is δd ∼ 2π ∗ l/δQz, with δQz measured along the
Oz direction in the reciprocal space. Cases (ii) and (iii)
are easily distinguishable by their l dependency.

iv) Let suppose that correlations exist between the dif-
ferent chains of C60 inside a bundle, giving rise to
a 3D nano-crystal of parallel C60 chains. As the 1D
character is lost each (M) plane reduces to a disc
whose diameter δQy gives the correlation length per-
pendicularly to the nanotubes axis. This correlation
length L ∼ 2π/δQy can be measured along each (M)
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Fig. 4. 2D oriented C60@SWNT sample. Left part of (a): bundles in direct space, right part: corresponding reciprocal space.
(b): details of plane (yOz); (c), (d) and (e) are schematic scans along Oz, Ot and along the C curve, respectively.

plane along the (OY ) direction in the reciprocal space
(Fig. 3iv). In that case δQy does not depend on the
plane index l. Note that if 3D correlation are strong
enough, new additional reflections could appear inside
each (M) plane, but they would remain very weak.

Presumably, a 1D oriented sample of C60@SWNT peapods
would contain the four effects simultaneously. Conse-
quently the expression of the intensity I(Q) must take
into account the four Gaussian distributions.

However, no experimental work dealing with a real 1D
oriented C60@SWNT peapod sample has ever been pub-
lished, excepted for electron diffraction [13]. Therefore we
will consider the different aspects of a 2D oriented sample,
an example of which is frequently found experimentally as
a ‘paper’ or ‘mat’ sample [12].

2.2 2D oriented C60@SWNT samples

First let consider a perfect pellet (or a film) of peapods.
We orient the pellet horizontally so that all the bundles
lay within the horizontal plane with an homogeneous an-
gular distribution around the (Oz) axis (Fig. 4a left). The
reciprocal space of this sample is obtained by repeating
the construction of Figure 2a for each bundle orientation
(Fig. 4a right). It comprises two parts:

1) The 2D (hk) reflections from the bundles lattice are
contained on spheres with a maximum signal at the
S point on the vertical Oz axis. The reason for this
maximum is that all the bundles of the pellet are si-
multaneously in reflection at this point [14] . Moreover
to take into account the very large width of the (hk)
reflections (along a radius, see Fig. 1), one must con-
sider that each sphere presents a non-zero thickness. As

a consequence the 2D tube lattice signal is never extin-
guished whatever the point in the reciprocal space is.

2) The (00l) response is now made of all the (M) planes
lying tangentially to a cylindric surface whose axis is
parallel to Oz. Both the direct and reciprocal spaces
possess a symmetric axial axis along Oz, so that the
figure can be drawn in a plane (Fig. 4b).

A Q scan along Oz gives the (hk) reflections of the tube
lattice and no signal from the (M) planes (Fig. 4c). Scans
along any other direction give a mixture of the response
of tube lattice and of the 1D C60 crystal (Fig. 4d), resem-
bling to the powder diagram of Figure 1. Let now consider
a constant Q scan along a circle C (Fig. 4b). If Q ≥ 2π/d,
each time the current point goes across the (M) plane as
shown by the point P, a maximum is expected (Fig. 4e).
In this scan the bundle lattice signal, which becomes max-
imum when crossing the Oz direction, is very smooth and
can be easily parametrized. Therefore, it can be easily sub-
tracted from the total response, revealing the signal of the
C60 crystal alone.

In Section 3, we present the simulation of the diffrac-
tion patterns for a 2D oriented sample, and will discuss in
Section 4 the effects of mosaic, distribution of diameter,
finite size and correlation in between C60 chains.

3 Simulations of the diffraction patterns
for a 2D oriented sample

The simulated patterns presented in this section concern
the perfect pellet of Section 2.2. In Appendix A we present
the Ewald construction as a support to the interpretation
of results obtained from calculation.
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3.1 The measured signal

The signal measured by a diffractometer Im(Q) is the
convolution product of the theoretical signal Ith(Q) by
the resolution function R(Q) of the apparatus

Im(Q) =
∫ ∫ ∫

Ith(Q1)R(Q − Q1)d3Q1 (1)

Ith(Q) is the response drawn in reciprocal space (Q space)
in Figures 2a and 4a. For a collection of bundles oriented
along OZ as shown in Figure 2a, Ith(Q) is given by [11]

Ith(Q) =
2π

Q2

⎡

⎣F 2
L

⎛

⎝
∑

i,j

B(sijQH)

⎞

⎠ δ(Qz)

+F 2
C

∑

n�=0

p2δ

(
Qz − 2πn

d

)
⎤

⎦ (2)

where FC and FL (form factors along and perpendicularly
to the tube axis, respectively) are given by

FL = ρL B(ρQH)
sin Qzd

2
Qzd
2

+ aC p (3)

and
F 2

C = 2πNT a2
C . (4)

In these expressions we make the assumption of infinitely
long tubes containing infinitely long C60 chains with no
correlation between them. The case of correlated chains
is studied in Section 4. ρ = 0.68 nm is the tube radius,
d is the C60–C60 distance inside a tube (d ∼ 0.97 nm
is the parameter of the C60 1D crystal), aC is equal to
(4πρ2

C(sin QρC/QρC)) where ρC is the C60 radius, p is the
filling rate for which we take p = 1 and NT is the number
of tubes in the bundle. The Q vector has two compo-
nents: Qz along Oz and QH is the component lying in the
plane perpendicular to the (bundle) tube axis. B(ρQH)
and B(sijQH) are two zero order Bessel functions and sij

represents the distance between two different tubes (re-
ferred as tube i and tube j) in one bundle. In the case
of a pellet, one has to take into account all the bundle
orientations along the pellet plane. The expression (2) is
then integrated over all the orientations:

Ipellet
th (Q) =

∫ ∫
Ith(Q)F (Ω)dΩ (5)

where Ith(Q) is given by equation (2), Ω is the solid angle,
and F (Ω) defines the sample organization. More precisely
in the case of the pellet (see Fig. 4a) one has F (Ω) = 1, if
Ω lies along the horizontal plane and 0 otherwise. Using
equations (5) and (1) one obtains the measured intensity
Im(Q).

The resolution function R(Q) is commonly represented
by a Gaussian function in the 3 dimensional Q space.
It can be viewed as some volume for which the signal is
transmitted. This volume is a small portion of the Ewald

Fig. 5. Simulated patterns for a 2D oriented sample. (a) Scans
along Oz and Oy (see Fig. 4); top curve: filled tubes along
Oy; middle curve: filled tubes along Oz; dotted curve: empty
tubes along Oy. (b): “2θ” scans in transmission for different
orientations of the sample around ϕ = 0◦, i.e. from bottom to
top −32◦, –8◦, 0◦, 16◦ and 40◦. Inset: dotted curve for ϕ = −8◦,
continuous curve for scan Oy. (c) Shows the path E followed in
reciprocal space for the scans of (b). For clarity only one (M)
plane has been represented.

sphere. Consequently, it is often a very flat volume which
can be imaged by a disc in the Q space. For an usual 3D
crystal, the anisotropy of R(Q) has only small effects on
the diffraction pattern. But in the case of a 1D crystal for
which the response is made of planes ((M)), the applica-
tion of (1) can result in unexpected behavior of the mea-
sured signal Im(Q). The resolution parameters used for
the simulations were adjusted on the measured patterns
obtained for several samples with the powder diffractome-
ter giving the diagram in Figure 1 (2θ diffractometer with
a germanium (111) monochromator).

3.2 Usual 2θ and θ/2θ scans

First we present results obtained for scans along lines in
Q space that we will refer as ‘longitudinal’ in the follow-
ing discussion. These lines start at the origin and keep a
constant direction in the reciprocal space. We use the ref-
erential of the pellet given in Figure 4a. Three scans are
shown in Figure 5a: a scan along Oy for empty tubes, a
scan along Oy for filled tubes and a scan along Oz for filled
tubes. These scan are performed in “θ/2θ” mode. Taking
the Oz scan as example, the incident beam is parallel to
the pellet surface at Q = 0, then the sample performs a
rotation of θ when the detector rotates of 2θ (see Fig. 8a).
As already observed [6,11] the intensity of the (10) reflec-
tion at Q = 0.45 Å−1 is strongly reduced for the filled
tubes scans which are very similar up to Q = 0.6 Å−1.
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By contrast, the sharp peaks arising at Q = 0.66 Å−1 and
at Q = 1.3 Å−1 when Q goes across the first and second
(M) planes, do not appear in the Oz scan (middle curve)
as explained before. We note that the maximum of the
peak is limited by the resolution of the diffractometer for
this perfectly oriented sample.

In Figure 5b “2θ” scans for which only the detector
is turned during the data acquisition, are presented. In
that case the path of the scattering vector Q in the re-
ciprocal space is a circle E lying on the Ewald sphere
as represented in Figure 5c. The incident and reflected
beams are represented by the vectors ki and kf respec-
tively. One has Q = −ki + kf , |ki| = |kf | and 2θ = (ki,
kf ). The incident beam is always perpendicular to the
Ewald sphere at the origin O, and the angle ϕ between ki

and the perpendicular to the pellet (Oz) can take differ-
ent values (see also Fig. 8a and Appendix A). When the
pellet is oriented in a transmission geometry (ki parallel
to Oz, ϕ = 0◦) one obtains a pattern resembling to the
longitudinal scan along Oy (Fig. 5a top), but with a nar-
rower (001) peak. Several patterns have been simulated
for different ϕ angles ranging from −40◦ to 40◦. The inset
shows that the ϕ = −8◦ orientation (dotted curve) is the
most resembling to the longitudinal Oy scan. The (001)
peak position strongly depends on the angle ϕ for the
same reasons than those discussed for the oblique Ot line
in Section 1. Consequently the correct C60–C60 parame-
ter measurement has to be done with the longitudinal Oy
scan (“θ/2θ” mode). One has d = 2π/Q0 where Q0 cor-
responds to the sharp increasing side of the (001) peak
in this case. The other determinations of d using 2θ scans
are only approximate. However the error made on d is less
than 0.01 nm if −12◦ ≤ ϕ ≤ 6◦ in the 2θ operating mode.

3.3 Constant Q scans

All the peapods scans presented in Figure 5 contain some
mixture of tube lattice response and C60 crystal response.
In the following we consider constant Q scans as described
in Section 2.2, for different values of Q (Fig. 4e). The
scanning variable is the angle ϕ or more conveniently
ω = ϕ − 90◦ − θ, with θ kept constant (like Q — see Ap-
pendix A). The signal is periodic with a period of 180◦.
The scan displayed in Figure 6a has been calculated for
Q = 0.670 Å−1, i.e. for a Q value slightly above the limit
value of 0.648 Å−1 for which the circle of the constant Q
scan is precisely tangential to the (001) (M) plane. For
the angle ω = 0◦ which corresponds to Q along the Oz
axis, the signal originating from the tube lattice is maxi-
mum, all bundles being in reflection for this configuration
as explained in Section 2.2. By contrast, this response is
very small at ω = 90◦. We note that the sharpness of the
peak at 0◦ is resolution limited. Each time the resolution
goes across a (M) plane a sharp peak arises as shown by
the two peaks at 75.67◦ and 104.44◦ in Figure 6a. The
insert gives details of the pattern for different values of Q.
At Q = 0.65 Å−1, i.e. very close to the limit value, the
diffraction pattern is a broad and large peak. For other Q
values, a three peak structure is visible in contrast with

Fig. 6. Constant Q scans for a 2D oriented sample. (a) Con-
stant Q = 0.67 Å−1 scan; inset: details for Q = 0.65 (central),
0.67, 0.71 and 0.75 Å−1 . (b) Peak position (continuous curve)
calculated from a geometrical construction, dots and squares
taken from the peaks in (a) and integrated intensity (dashed
curve) of the (M) plane (001) signal as function of Q.

the predictions given in Section 2.2. This feature com-
prises 2 sharp peaks plus a broad one placed not in the
middle of the angular interval. This unexpected supple-
mentary peak is a resolution effect as it disappears when
the resolution volume is constrained to be very small and
isotropic. When Q increases, going away from the limit
value, the angular interval increases and the peaks in-
tensity decreases, accordingly. Figure 6b displays the Q
dependency of the different peak positions, which can be
calculated by a convenient geometrical model (continuous
curves). The tube lattice signal can be parametrized and
subtracted from the total signal, giving the C60 1D crystal
response alone, the integrated intensity of which has been
plotted as function of Q in Figure 6b.

The constant Q scan method presented here allows to
separate very simply the contribution from the tube lat-
tice to the one originating from the C60 1D crystal in the
diffraction diagram. This can help when one is interested
in fine refinement of the structural parameters of the C60

chain.



R. Almairac et al.: Diffraction of oriented nano-peapods 153

4 Discussion

In this section, we discuss the case of an imperfect 2D
oriented peapod sample, similar to usual real samples that
are studied by X-ray diffraction. As for the 1D oriented
sample, four effects have to be considered: i) dispersion
of the parameter; ii) short C60 chains; iii) mosaic (also
called out of plane mosaic); and iv) correlation between
C60 chains within the bundles. To quantify the different
effects we have to determine the characteristic widths of
the convenient Gaussian distributions. As the situation is
rather more complex than for the 1D sample we limit the
discussion to some examples.
i) Dispersion of the parameter or ii) presence of short

chains results in a broadening of the (M) planes, so
that each plane presents some thickness (see ii) and
iii) in Fig. 3). The only difference between the two
cases is that the thickness — or the FWHM of the
distribution — keeps the same value for all the (00l)
planes in the case of finite size induced broadening,
whereas it is multiplied by the index l for a dispersion
of lattice parameter as was explained in Section 2. The
most favorable configuration for probing these effects
is the longitudinal Oy scan (i.e. “θ/2θ”). In Figure 7a
the diffraction pattern calculated for a parameter dis-
tribution of δd = 0.53 Å centered around d = 9.7 Å
is compared to the case of a perfect sample. The peak
at 0.65 Å−1 is wider but it remains asymmetric. If we
make the assumption that the full line is an experi-
mental result, one can try to extract the parameter
dispersion directly by performing a convolution of the
perfect sample curve (dash line) by a Gaussian func-
tion, the width of which gives the width of the dis-
tribution. One gets a δQ value of 0.032 Å−1, for the
Gaussian width, which gives a δd = 0.47 Å using the
relation δd/d = δQ/Q. The good agreement between
the injected width and the one used doing the convo-
lution makes this method very powerful since with this
direct method there is no need to perform a full model
calculation. One just has to modelize the diagram for a
perfect sample. According to the previous comments,
the curve in Figure 7a can also be interpreted with a
short chain model. In that case the length of the chain
would be L ∼ 2π/δQ ∼ 170 Å (∼18 C60 molecules).

iii) The most convenient configuration to study the out
of plane mosaic is a constant Q scan across the Oz
axis. In that case the other effects will not interfere
with the mosaic effect and the mosaic angle can be
determined directly from the signal of the tube lat-
tice. Figure 7b compares the signal originating from
the tube lattice for a 4◦ mosaic sample to that of a
perfectly 2D oriented sample (constant Q scan). The
effect of out of plane mosaic on the C60 crystal signal
is also represented on a magnified scale. The two sharp
peaks broaden dramatically as soon as the mosaic an-
gle is larger than ∼4◦. The magnitude of this effect
increases with the distance to the (M) plane (Q−Q0),
where Q0 is the limit value (Q0 = 2π/d). Interestingly
the effect of mosaic on 2θ scans in transmission geom-
etry (ω = 0◦) is very different from that of parameter

Fig. 7. Imperfect 2D oriented sample. (a) Longitudinal scan
along Oy (see Fig. 4) in the case of parameter dispersion or
short chains. (b) Effect of the mosaic on constant Q scan at
Q = 0.71 Å−1, dashed line for perfect sample, continuous line
for 4◦ mosaic. The array of tubes gives the signal around ω = 0◦

and the C60 signal (inset) is around 90◦. (c) Effect of mosaic
on “2θ” scans in transmission for a mosaic of 40◦ (mosaic:
continuous line, perfect sample: dashed curve). (d) Scans along
Oy and constant Q scan for correlated chains (continuous line)
and uncorrelated ones (dashed line). The mosaic angle is 60◦.

dispersion and short chains. It can be viewed in Fig-
ure 7c that the peak at 0.65 Å−1 remains sharp even
for a mosaic angle as large as 40◦, in contrast to the
other effects.

iv) The experimental determination of the correlation
length between C60 chains using diffraction patterns
is not straightforward. Scans along the (M) planes
crossing the Oy axis would allow to measure the cor-
responding width (see Figs. 4a and 4b). However form
factor, mosaic effects and correlations between chains
altogether produce a signal decreasing, so that both ef-
fects have to be taken into account simultaneously in
the interpretation of the data. Nevertheless constant
Q scans as described previously will bring pertinent
information on this question. Since it is possible to re-
move the tube lattice response, it would be possible
to determine the persistence or the disappearance of
the C60 chain signal when going away from the Oy
axis by successive Q increasing constant Q scans. If
3D correlation exist, the C60 crystal response in Fig-
ure 6a will rapidly disappear as soon as Q departs from
Q0 = 2π/d.

In Figure 7d we simulate a longitudinal scan along Oy (see
Fig. 4) for a very large out of plane mosaic of 60◦ (FWHM)
in the case of strongly correlated C60 chains (continuous
curve) and chains with no correlation (dashed curve). For
the second curve the amplitude is displaced toward the
high Q side of the (001) peak. We also simulate constant
Q scans at Q = 0.69 Å−1 in Figure 7d (right). Due to the
large out of plane mosaic the narrow peak at ω = 0◦ in
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Fig. 8. Ewald construction and its application to an image plate configuration. (a) Ewald construction in a plane and definition
of the angles ϕ and ω. (b) Application to the image plate method; the pellet is horizontal, at the center of the sphere. The
reciprocal space is plotted at point O. (c) Film plane; the small circle is the (10) reflection, the dashed line circle is a constant
Q scan, the other continuous lines are the images of the cylinders related to the different (M) planes (Fig. 4a).

Figure 7b transforms into a very broad one centered at
0◦. As it corresponds to the crossing of the Oz axis this
peak is due to the 2D lattice. In a similar way the 3 peaks
structure corresponding to the crossing of the (M) plane
(inset of Fig. 7b) becomes a very broad peak centered at
ω = 90◦ (see dashed curve in Fig. 7d right). This constant
Q scan proves that the 1D C60 crystal presents a strong
contribution to the signal for chains with no correlation
whereas it is very small for correlated chains. This example
illustrates the method used to separate the 1D and 2D
contributions using constant Q scans.

Finally we make a comment about the frequently
used diffraction experiments of 2D oriented peapods us-
ing an image plate as detector [12]. The Ewald construc-
tion for this experiment is represented in Figure 8b and
a schematic description of the result in the film plane
is shown in Figure 8c. This method operates in a “2θ”
mode: each line of the film going through the center is a
“2θ” scan as described above. Each circle on the film is
a kind of constant Q scan (dashed lines in Figs. 8b and
8c). One remarks that constant Q scans performed with
this film method are different from those described pre-
viously as they do not intercept the Oz axis (see the C
line in Fig. 4a). In the geometry represented in Figure 8b
the (hk) reflections of the tubes lattice appear as circles
on the plane of the image plate (Fig. 8c). The cylinders
representing the small Q limit of the (M) planes cut the
Ewald sphere along lines that appear as curves with a ver-
tical peanut shape onto the film plane. This figure does not
take into account the intensity along the curve but only

Fig. 9. Schematic results of the image plate method: the upper
curve is a scan along the horizontal line of the film, the lower
curve is for the vertical one.

the positions. The (hk) reflections give a large intensity
along the vertical axis and the (00l) (M) planes responses
are strong along the horizontal axis. The corresponding
“2θ” scans are shown in Figure 9. As the vertical scan
ends up at 1.8 Å−1 the first (M) plane contribution does
not appear and only (hk) reflections are visible (the first
(M) plane signal would be at 2.4 Å−1 ). On contrary the
(001) and (002) signals are strong in the horizontal scan.
This method is powerful for a very good approximation of
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the C60–C60 distance, even with a large out of plane mo-
saic sample (see Sect. 3.2). Making a difference curve by
combining these two curves according to some convenient
weighting is a way to remove almost completely the 2D
signal, thus enhancing the 1D signal [12].

In summary, we have performed a theoretical investi-
gation of the diffraction diagram of oriented samples of
peapods. Different cases of the orientation, from perfectly
1D oriented samples to imperfect 2D oriented pellets were
taken into account. We have shown that using appropriate
scans according to the sample symmetry, i.e. longitudinal
scans along the symmetry axis of the pellet (or of the fiber)
and in a direction perpendicular to this axis, it is possible
to get a number of pertinent informations on the structure
of the peapods. In all cases the constant Q method (along
the C line) permit to distinguish between the 2D (lattice)
and the 1D (C60) contribution, even in unfavorable cases
where the out of plane mosaic is as large as 60◦. Concern-
ing the polymerization state of C60 molecules, longitudinal
scans are the more convenient to determine the C60–C60

distance. A further step inside the knowledge of the sys-
tem would be to determine the correlation length along
the chains and finally the last step would be to modelize
these results by the appropriate distribution of monomers,
dimers and polymers. Concerning the correlation state be-
tween chains we have described a convenient method (see
Fig. 7d) that allows to probe such correlation even for
samples showing a large out of plane mosaic. Finally we
remark that these different methods apply also to fibers
provided that the sample orientation presents a cylindrical
symmetry axis.

Appendix A

A.1 Ewald sphere and definition of the ω and ϕ angles

The wave vectors of incoming and diffracted beams, ki

and kf are related to the wavevector Q by (see Fig. 8a):

kf = ki + Q and kf = ki = Ewald sphere radius.

The sample is at the center of the Ewald sphere S. The
reciprocal space of the sample is drawn at point O which
is the origin of Q. The orientation of the pellet is given by
the angle ϕ. One has: ϕ = 90+θ+ω. At ϕ = 0 or 180◦ the
pellet is perpendicular to ki (transmission geometry). At
ω = 0 the normal to the pellet is parallel to Q (reflection

geometry). The signal is collected at the end of Q, at point
R, which is the center of the resolution volume.

A.2 Ewald sphere in 3D space in the case
of an horizontal pellet (Fig. 8b)

The signal collected on the film corresponds to the re-
sponse lying on the Ewald sphere surface and delimited
by a convenient solid angle associated to the film surface.
The figure is made for an horizontal pellet. In Figure 8c
a schematic representation of the result is indicated. In a
real experiment the scales depend on the sample to film
distance. We preferred to use a scale in Å−1, i.e. in recip-
rocal space in Figure 8c.
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